Breakthrough Solid State Battery – 900 Wh/L Samsung

Samsung research was led by Yong-Gun Lee for an All-Solid-State-Battery (ASSBs). Their goal was to eliminate dendrites formation and increase coulombic efficiency. To do that they sandwiched layers of Lithium Nickel-Cobalt-Manganese-Oxide (NMC for short) mixed with a Sulfide Solid Electrolytes (SSE, show formula on screen), on top of nanocomposite-layer of Silver-Carbon. All of this is located in between a foil of Aluminum and Stainless steel as the current collectors. The idea behind this was to remove lithium foil from the mix and have all lithium atoms part of the NMC and SSE. This approach diminishes the costs of the overall battery manufacturing since handling lithium usually needs an oxygen free environment due to its high reactivity. This is important for a few reasons, in conventional lithium batteries, the anode comprised of lithium moves freely towards the positive electrode during discharge. Dendrites are formed during the charging process when lithium moves back to its initial location thanks to the free movement enabled by liquid or gel electrolyte. This is the main limiting factor of how much energy can be store in these batteries since to control this, the amount of lithium available in the system has to be caped, limiting the energy density.

How Quantum is re-imaging the electric car battery

Dr. Jeff Welser, vice president of IBM Research Almaden, pacific rim labs, and global exploratory science, tells Tonya Hall about how quantum computing is necessary to accurately model large molecule interactions and how IBM Research Almaden is putting that theory to use when re-imaging eclectic car batteries.

Are Solid State Batteries About To Change The World?

As the world becomes more electrified, the race is on to build cheaper, longer-lasting, more energy-dense batteries. One of the most promising technologies in this space is the solid state battery, developed by an absolute legend in the battery world, one of the inventors of the lithium ion battery and recent Nobel Prize winner John B. Goodenough.