A neural network is a computer system modeled on the human brain and nervous system and is trained to recognize patterns.
The patterns they recognize are numerical, but all real-world data, whether images, sound, text or time series, can be translated.
There are many neural network variants, but in this video introduction, a basic model is demonstrated.
When talking about neurons in a computer, it’s just something that holds a number.
A series of connected neurons comprise a layer.
And a neural network is a series of neuron layers.
Neural networks cluster and classify data.
They are used to group unlabeled data according to similarities among the example inputs, and they classify data when they have a labeled set of data for comparison.
In this video, the idea it to learn patterns from an image to read a hand-drawn number.
Much of machine learning comes down to having a good grasp of linear algebra.
In brief, this type of neural network is based upon different types of mathematical averages and biases that build upon recognizing parts of images to recognizing a complete image.